
923

0022-4715/04/0200-0923/0 © 2004 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 114, Nos. 3/4, February 2004 (© 2004)

Small Values of the Maximum for the Integral of
Fractional Brownian Motion

G. Molchan1 , 2 and A. Khokhlov2

1 Observatoire de la Côte d’Azur, CNRS UMR 6529, Observatoire de la Côte d’Azur
B.P.4229, 06304, Nice Cedex 4, France.

2 International Institute of Earthquake Prediction Theory and Mathematical Geophysics
RAS, 79, b2, Warshavskoe shosse 117556 Moscow, Russia; e-mail: {molchan, khokhlov}@
mitp.ru

Received January 22, 2003; accepted July 18, 2003

We consider the integral of fractional Brownian motion (IFBM) and its func-
tionals tT on the intervals (0, T) and (−T, T) of the following types: the
maximum MT, the position of the maximum, the occupation time above zero
etc. We show how the asymptotics of P(tT < 1)=pT, T Q ., is related to the
Hausdorff dimension of Lagrangian regular points for the inviscid Burgers
equation with FBM initial velocity. We produce computational evidence in
favor of a power asymptotics for pT. The data do not reject the hypothesis that
the exponent h of the power law is related to the similarity parameter H of
fractional Brownian motion as follows: h=−(1 − H) for the interval (−T, T)
and h=−H(1 − H) for (0, T). The point 0 is special in that IFBM and its
derivative both vanish there.

KEY WORDS: Fractional Brownian motion; Burgers equation; fractality; long
excursions.

1. INTRODUCTION

Sinai (19) and Frisch and associates (18) initiated in 1992 the study of fractal
and multifractal properties of solutions of the inviscid Burgers equation
with initial velocity u0(x) specified by a self-similar random process. That
last circumstance guarantees that the solution is self-similar in the large. In
particular, one could be interested in finding the Hausdorff dimension of
the set of regular Lagrangian points S that describe the initial locations
of those fluid particles which have not collided until a fixed time t0. The



original model of u0(x) was fractional Brownian motion (FBM), bH(x),
with similarity parameter 0 < H < 1.

By now the Sinai–Frisch program has been carried out for special
Markovian models of u0(x) alone: Sinai (19) has found the dimension S for
Brownian motion case, i.e., u0(x)=b1/2(x); Bertoin (3) discovered for this
case that the solution u(t=t0, x) admits of an exact probabilistic descrip-
tion as a Levy process. One can then find a multifractal description of the
solution x Q u(t0, x) (the relevant references are refs. 6–8). Additionally,
Bertoin (3) found that the Hausdorff dimension of Lagrangian regular
points is h, if u0(x) is a stable Lévy process of index a=h−1 ¥ (1, 2] with no
positive jumps (see also ref. 21).

The nonmarkovian case u0(x)=bH(x), H ] 1/2 has proved extremely
difficult for analysis. Handa (5) found simple arguments to derive a lower
bound on the dimension of S, namely, dim S \ H. The exact equality
dim S=H is known as a hypothesis (18, 20) since 1992. Among methods
developed for analyzing the nonmarkovian case u0(x), the Sinai approach
is of particular interest. For the case u0(x)=b1/2(x) this method (19) relates
the estimation of the dimension of S to the asymptotic behavior of the
probability

pT=P{t(x) < 1, x ¥ DT}

for integral Brownian motion

t(x)=F
x

0
b1/2(s) ds and DT=(0, T), T ± 1. (1)

As a matter of fact (see below), one has to deal with a problem that is
rather popular in physical and technical applications: find the probability
of a long excursion for a random process g(x), i.e., P{g(x) > g(0),
1 < x < T}, T ± 1. A review of the problem can be found in ref. 15. Sinai
has shown that the quantity pT · T1/4 is bounded away from 0 and . as
T Q . under the conditions (1). That estimate was repeatedly refined and
generalized. (10–12)

We show below that the upper bound dim S [ H under the conditions
u0(x)=bH(x) follows from an estimate of pT for the integral of fractional
Brownian motion (IFBM): t(x)=>x

0 bH(s) ds when considered in the bila-
terally expanding interval DT=(−T, T).

The work (16) clarifies the asymptotic problem of pT for intervals (0, T)
and (−T, T) in the case of fractional Brownian motion: t(x)=bH(x). It
transpires that in this case

ln pT=−(1 − H) ln T(1+o(1)), DT=(0, T).
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On the other hand, when DT={x: |x| < T}, the leading term in the log
asymptotics of pT is independent of H. More generally, suppose bH(x),
x ¥ Rd is FBM with multidimensional time; in that case

ln pT=−d ln T(1+o(1)), DT={x ¥ Rd : |x| < T}.

The last asymptotics is due to the fact that the probability density for
the position of the maximum of FBM exists in the sphere {|x| < 1}. A gen-
eralization of this fact is given below.

We present theoretical and computational evidence in favor of the
following conjecture for IFBM:

ln pT=˛ − (1 − H) ln T(1+o(1)), DT=(−T, T)
− H(1 − H) ln T(1+o(1)), DT=(0, T); T ± 1.

The first of these asymptotic expressions corroborates the hypothesis
dim S=H, so is not unexpected, while the second is, considering that the
exponent h(H)=H(1 − H) has the point of symmetry H=1/2.

Because IFBM is a self-similar process, the distribution of its
maximum in D=(0, 1) or (−1, 1), Fmax(x), is related to pT through
pT=Fmax(T−(1+H)). Importantly, our calculation was performed for a series
of statistics: the maximum M=maxD IFBM; the position of M in D, G; the
occupation time A+=>D 1t(x) > 0 dx of IFBM above zero; and the rightmost
zero of IFBM in (0, T), Z. The distributions of these statistics (one should
use Fmax(x1+H) when M is considered) have identical asymptotics as x Q 0,
but depend on interval type: D=(0, 1) or (−1, 1). When D=(−1, 1), they
provide independent evidence in favor of the hypothesis dim S=H.

The rest of this paper is organized as follows. Section 2 reduces the
evaluation of dim S [ H to the asymptotic distributions of M, G, A+ and Z
near zero. Section 3 discusses the modeling of IFBM, while Section 4 pre-
sents numerical evaluations of the distributions listed above and some
theoretical arguments to support our conclusions.

2. REGULAR LAGRANGIAN POINTS AND THE NONEXCEEDANCE

OF LEVEL

We now define more exactly the notions used in the Introduction. We
consider the Burgers equation

“tu+u “xu=nuxx, n a 0, (2)

with continuous initial conditions u(0, x)=u0(x) and the velocity potential
U(x)=>x

0 u0(x) dx=o(x2), x Q .. The solution at t0=1 has the form
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u(x)=x − a(x), where a(x) can be found from U(x) as follows. Construct
a convex minorant C(x) for U(x)+x2/2. In that case its derivative CŒ(x) is
nondecreasing and has finite limits from the left and from the right. We
now complete the definition of CŒ(x) in continuity on the right. In that
case, according to Hopf (see, e.g., refs. 19 and 22), a(x) is identical with the
inverse function of CŒ(x). The set of points where CŒ(x) is increasing, i.e.,
the topological support of the measure dCŒ(x) or the closure of the set
{a(x), x ¥ R}, defines the set S of regular Langrangian points in the
Burgers problem. More precisely a Lagrangian regular point is a point in S
that is isolated neither to its left nor to its right in S. The dynamics of
completely inelastic particles on R1 can be related to the Burgers equation:
each infinitesimal particle located at x has a mass dx and an initial
momentum dU(x). On colliding the particles coalesce and continue
movement following the conservation laws of mass and momentum. Initial
positions of those particles that have not collided until time t0=1 make up
the set of regular Lagrangian points. The initial conditions u0(x) will be
considered to be fractional Brownian motion bH(x), i.e., a Gaussian
process with zero mean and structural function E |bH(x) − bH(y)|2=
|x − y|2H where 0 < H < 1. In virtue of the Kolmogorov theorem the paths
of bH(x) can be treated as continuous a.s. The process bH(x) is self-similar,
i.e., bH(Lx)=d

LHbH(x), where =d denotes equality of finite-dimensional
distributions.

Theorem 1. 1. The set of regular Lagrangian points in the Burgers
problem (2) with u0(x)=bH(x) has a.s. dimension H, if for any e > 0 and
T Q . one of the following requirements is fulfilled:

(A) P 3y(x) :=F
x

0
bH(s) ds < 1, x ¥ DT

4 < T−(1 − H)+e,

(B) P(y(x) < 0, x ¥ DT, |x| > 1) < T−(1 − H)+e,

(C) P(|G(DT)| < 1) < T−(1 − H)+e,

(D) P 3F
DT

1y(x) > 0dx < 1, |G(DT)| < T4 < T−(1 − H)+e,

where DT=(−T, T), G(DT) is the position of the maximum of y(x) in DT.

2. If one of type A–D probabilities pT has an asymptotics of the
form log pT=−h log T(1+o(1)), the probabilities of the other types have
the same asymptotics. This statement also holds for DT=(0, T) with the
probability P(ZT < 1) in addition to (A–D), where ZT is the rightmost zero
of y(x) in (0, T).
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The proof of the theorem will be preceded by two lemmas.

Lemma 1. dim S [ H, if for any e > 0 there exists a d0=d0(e) such
that one has for arbitrary x ¥ R1:

P(S 5 B(x, d) ] f) < d (1 − H) − e, d < d0 (3)

where B(x, d) is a ball of radius d centered at x.

Proof. Let us consider the measure m(dx)=dCŒ(x) with support S.
Cover a finite interval D with intervals Bi(d) of length d with overlappings
of length d/2. The elements B̃i in {Bi(d)} for which m(Bi) > 0 will then
form a cover S 5 D. In view of (3)

E C |B̃i(d)|H+2e=E C |Bi(d)|H+2e 1m(Bi) > 0

< dH+2e · 2 |D| d−1 · d (1 − H) − e=cd e

where |D| is the length of D. By Chebyshev’s inequality

P 1C |B̃i |H+2e > a2 < cd e/a.

Consider a sequence dn such that ; d e
n < .. The Borel–Cantelli lemma

then yields

C |B̃i(dn)|H+2e < a, n > n(w).

Since a is arbitrary:

lim sup
n

C |B̃i(dn)|H+2e=0 a.s.

However, in that case one has dim(S 5 D) [ H+2e. Since e > 0 and D

are arbitrary, one has dim S [ H.

Lemma 2. The conditions of Lemma 1 are fulfilled, if

P 3F
x

0
bH(s) ds < 1, |x| < T4 < T−(1 − H)+e, -e > 0.

as T Q ..
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Proof. The process y(x)=>x
0 bH(s) ds+x2/2 can be represented in

the form

y(x)=F
c

0
(bH(s)+s) ds+(bH(c)+c)(x − c)

+F
x

c
[bH(s) − bH(c)+(s − c)] ds=L(xŒ)+F

x −

0
(b̃H(s)+s) ds,

where L(xŒ) is a linear function of xŒ=x − c, and b̃H(x)=bH(c+x) −
bH(c)=d bH(x). The convex minorants of y and ỹ=>x −

0 (b̃H(s)+s) ds differ
by the linear function L(xŒ). Hence the fractal properties of the measure
m(dx)=dCŒ(x) are invariant under translation along the x-axis (this
observation is due to U. Frisch). Consequently, it is sufficient to prove (3)
for SŒ=S 5 (−d/2, d/2).

Let D=(−d/2, d/2) contain a point of growth x0 for the measure dm.
That means that the curve f(x)=U(x)+x2/2 and its convex minorant
C(x) do not lie below the tangent of f(x) at the point x0, and
C(x0)=f(x0). The event {x0 ¥ D}, to be called A here, can be written as

A=3,x0: |x0 | < d/2; F
x

0
(bH(s)+s) ds

\ F
x0

0
(bH(s)+s) ds+(bH(x0)+x0)(x − x0), -x ¥ R14 .

Let us modify event A to become A1, i.e., we assume that the equality
in the formulation of A is true for |x| < 1 only. To emphasize the fact that
A1 depends on the process bH(x)+x=t(x), we will write A1=A1[t].

One has

P(A) [ P(A1)=E1A1[bH+j]=E1A1[b̃H]p(b̃H), (4)

where j(x)=x and p is the Radon–Nikodim derivative of two Gaussian
measures corresponding to the processes b̃H − j and b̃H in [−1, 1]. Note
that b̃H is an FBM process. The function j is smooth and vanishes at zero.
For this reason the above measures are mutually absolutely continuous. (17)

By the Cameron–Martin relation ln p(b̃H) is a Gaussian variable with mean
− c2

H/2 and variance c2
H, where cH=||j|| and || · || is the norm in Hilbert

space HB of functions on D=[ − 1, 1] with reproducing kernel B(x, y)
=EbH(x) bH(y). The constant cH is finite and can be found in explicit
form as indicated by Molchan and Golosov. (17)
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Applying Hölder’s inequality to the right-hand side of (4), one gets

P(A) < P(A1[b̃H])1 − e (Ep1/e) e=P(A1[bH])1 − e ce, (5)

where ce=exp( 1
2 (e−1 − 1) c2

H).
We now evaluate P(A1[bH]). One has

P(A1[bH])=P 3,x0: |x0 | < d/2;

F
x

0
bH(s) ds \ F

x0

0
bH(s) ds+bH(x0)(x − x0), |x| < 14

=P 3,x0: |x0 | < 1/2; F
x

0
bH(s) ds \ a(x0)+b(x0) x, |x| < T4 ,

where

T=d−1, |a(x0)|=:Fx0

0
bH(s) ds − bH(x0) x0

: [ 2M,

|b(x0)|=|bH(x0)| [ M= max
|x| < 1/2

|bH(x)|.

We will use the Fernique inequality (4)

P(M > c̄Hu) < exp(−u2/2)=T−a, u > u0,

where u=uT=`2a ln T, c̄H being a constant; the value of a will be chosen
later on. From this it follows that

P(A1[bH]) < P{A1[bH], M < c̄HuT}+T−a

< P 3F
x

0
bH(s) ds > − 2c̄HuT − c̄HuT |x|, |x| < T4+T−a

=P 3F
x

0
bH(s) ds < uT c̄H(2+|x|), |x| [ T4+T−a

=P 3F
x

0
bH(s) ds < 4l−1

T +2 |x|, |x| < TŒ4+T−a, (6)

where TŒ=T/lT, uT c̄H=2lH
T , lT=const · (ln T)1/2H. Here we have used

the fact that bH(x) is a self-similar process and modified the interval |x| [ T
to become |x| < TŒ.
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Define the function

j1(x)=2x1|x| < 1+2 sgn(x) 1|x| > 1=
2
pi

F [e ixl − 1]
sin l

l2 dl. (7)

In that case (6) can be continued to get

P(A1[bH]) [ P 3F
x

0
(bH(s) − j1(s)) ds < F(x), |x| < TŒ4+T−a, (8)

where

F(x)=˛ − x2+2 |x|+4l−1
T , |x| < 1,

1+4l−1
T , |x| > 1.

When T is large, one has F(x) < 2. For this reason the last estimate will
merely become less precise, when F is replaced with F(x)=2. The right-
hand side of (8) can be evaluated by repeating the steps that have led to
(4, 5). The substitution of b̃H for bH − j1 combined with Hölder’s inequality
yield

P(A1[bH]) < P 3F
x

0
bH(s) ds < 2, |x| < TŒ 4

1 − e

c1
e +T−a,

where c1
e =exp((e−1 − 1) b2/2), b2=||j1 ||2

T [ ||j1 ||2
.. Here || · ||T is the norm

on HB for the interval (−T, T). The spectral representations of the kernel

B(t, s)=EbH(t) bH(s)=k−1
H F (e itl − 1)(e−isl − 1) |l|−1 − 2H dl

and j1 (see (7)) yield

||j1 ||2
.=kH F :2 sin l

pl2
:2 |l|1+2H dl < .,

where kH=> |e il − 1|2 |l|−1 − 2H dl.
The final result is

P(A) [ P(A1[bH])1 − e ce < (p1 − e
TŒ c1

e +T−a)1 − e ce, (9)

where pTŒ=P{>x
0 bH(s) ds < 2, |x| < TŒ}.
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Let pT < T−(1 − H)+e1 for large T. Take a > 1 − H and choose e from the
requirement c1

e · ce=T −e1, i.e., e=ce−1
1 /ln TŒ. Inequality (9) can then be

continued:

P(A) < c1T − − (1 − H)+2e1,

where c1=exp(2(1 − H) ce−1
1 ). Recalling that TŒ=T(ln T)−1/2H · c2, one

obtains the desired estimate P(A) < T−(1 − H)+3e1, T > T0(e1), T=d−1.

Proof of Theorem 1. The inequality dim S \ H was derived by
Handa. (5) The opposite inequality dim S [ H follows from Lemmas 1 and 2
and condition A of Theorem 1. To prove the theorem under condition B,
we note that the event {>x

0 bH(s) ds < c, |x| < T} can be represented as

3F
x

0
(bH(s) − j(s)) ds < k(x), |x| < T4 ,

where j, k are smooth finite functions: k — 0 when |x| \ 1 and k > 0 when
|x| < 1, while j=0 when |x| < 1/2 and |x| > 1. Repeating the translation
procedure for the samples: bH(s) − j(s) Q b̃H(s) and using Hölder’s
inequality, we get

pT :=P 3F
x

0
bH(s) ds < 1, |x| < T4

< ceP 3F
x

0
bH(s) ds < k(x), |x| < T4

1 − e

< ceP 3F
x

0
bH(s) ds < 0, 1 < |x| < T4

1 − e

,

where ce=exp( 1
2 e−1 · c2

j), cj < kH > |ĵ(l)|2 |l|1+2H and ĵ is the Fourier
transform of j. One has cj < ., because j is smooth and finite. Choose
e=eT from the requirement ce=LT, where LT is a slowly varying func-
tion. Take LT=ln T, say, then e−1

T =c ln ln T. The result is

pT < LTP 1F
x

0
bH(s) ds < 0, 1 < |x| < T 21 − eT

.

When (B) holds, one has

pT < (T−(1 − H)+e1)1 − eT LT < T−(1 − H)+e2, T ± 1,

i.e., the implication (B) Q (A) is true.
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The inequality

P 1F
x

0
bH(s) ds < 0, 1 < |x| < T 2 < P(|G(−T, T)| < 1),

where G(D) is the position of the maximum of IFBM in D, yields the
implication (C) Q (B). Lastly, under (B) the position of the maximum of
IFBM is |G| < 1, while the occupation time of IFBM above 0 is below 2.
Hence (D) Q (B).

Let us prove (A) Q (C). Below, GT is the position of the maximum of
IFBM in (−T, T) and Ma=max|x| < a IFBM. One has

P(|GT | < 1) < P(|GT | < 1, M1 < cT)+P(M1 > cT).

If cT=`2a ln T, then the Fernique estimate (4) yields

P(M1 > cT) < cT−aŒ, T > T0,

where aŒ=a/s2 and s2=E |IFBM(1)|2=(2H+2)−1. Also,

P(|GT | < 1, M1 < cT) < P(MT < cT).

Since IFBM is self-similar, one has MT=d
l1+HMTŒ, when T=lTŒ. Take l

from the requirement l1+H=cT. Then P(MT < cT)=P(MTŒ < 1).
To sum up,

P(|GT | < 1) < P(MTŒ < 1)+o(T−a),

where TŒ=cT(ln T)−r, r=0.5(1+H)−1, while the parameter a > 0 is arbi-
trary. When a > (1 − H), the implication (A) Q (C) is obvious.

We are going to prove (A) Q (D). Let A+
T be the occupation time of

y(x)=IFBM(x) above zero in DT=(−T, T). One has

P(A+
T < 1, |GT | < T) [ P(MT < cT)+P(MT > cT, A+

T < 1, |GT | < T),

where cT will be specified below.
Let DT=1 Dk, Dk=(k, k+1), and Mk=max{y(x), x ¥ Dk}. If the

event B={MT > cT, A+
T < 1, |GT | < T} occurs, one will have the following

for the interval Dk which contains GT: Mk > cT, y(x) and yŒ(x)=bH(x)
have zeroes in Dk. Indeed, if y(x) ] 0, then y(x) > 0 in Dk and A+

T \ 1.
Consequently,

P(B) < C
k

P{max((y(x1) − y(x2)) > cT, x1, x2 ¥ Dk), Sk} :=C
k

pk,

where Sk means that bH(x) has a zero in Dk.
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We are going to evaluate pk:

pk < P{max[(y(x1) − y(x2)), x1, x2 ¥ Dk] > cT, |bH(k)| < cT/2}

+P{|bH(k)| > cT/2, Sk} :=pk, 1+pk, 2.

One has

pk, 2 < P{max(|bH(x1) − bH(x2)|, x1, x2 ¥ Dk) > cT/2}

=P{max(|bH(x1) − bH(x2)|, x1, x2 ¥ D0) > cT/2}.

Here we have used the fact that bH(x) has stationary increments. In virtue
of the Fernique inequality (4)

pk, 2 < c exp(−1
2 (cT/cb)2),

where c is an absolute constant, while cb is a function of H.
One proceeds in a similar manner to evaluate pk, 1:

y(x1) − y(x2)=F
x1

x2

(bH(s) − bH(k)) dx+bH(k)(x1 − x2).

If max[y(x1) − y(x2)] > cT in Dk × Dk and |bH(k)| < cT/2, then

max F
x1

x2

[bH(s) − bH(k)] ds > cT/2.

Consequently,

pk, 1 < P 3max 5F
x1

x2

(bH(s) − bH(k)) ds, x1, x2 ¥ Dk
6 > cT/24

=P 3max 5F
x2

x1

bH(s) ds, x1, x2 ¥ D0
6 > cT/24 .

Here again, we have used the relation bH(x) − bH(k)=d bH(x − k) with a
fixed k. The use of the Fernique inequality (4) yields

pk, 1 < c exp(−1
2 (cT/2cy)2)

where cy is a function of H. Combining the estimates of pk, 1 and pk, 2 and
assuming cT=max(cb, 2cy) `2a log T, one gets

pk=pk, 1+pk, 2 < cT−a.
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However, one then has P(B) < 2cT−a+1 and

P(A+
T < 1, |GT | < T) [ P(MT < cT)+O(T−a+1)

=P(MTŒ < 1)+O(T−a+1),

where TŒ=cT(log T)−r, r=0.5(1+H)−1. Hence (A) Q (D).
Consider the second part of the theorem. Let pT(G) be the probabil-

ities that appear in the first part of the theorem, where G denotes the con-
ditions A, B, C, or D. It has been shown above that, when T ± 1,

pT(A) < pT(B)1 − eT LT, pT(B) < pT(C),

pT(C) < pTŒ(A)+O(T−a), pT(D) < pTŒ(A)+O(T−a+1),

where a > 0 is any fixed number, LT is a slowly varying function of T,
eT=o(1), T Q . and TŒ=cT(ln T)−r, r=0.5(1+H)−1. A trivial corollary
of these is that all the pT(G) have the asymptotics ln pT(G)=
−h ln T(1+o(1)), provided the asymptotics is true for at least a single
quantity of the type G=A, C or D.

Our proof has not relied significantly on the type of the interval DT:
(−T, T) or (0, T). For this reason our conclusion that the asymptotics of
pT(G) are identical also holds for (0, T).

We conclude by noting that, if DT=(0, T), then pT(B)=P(y(x) > 0,
1 < t < T). Consequently, if ZT is the rightmost zero of y(x) in (0, T), then
P(ZT < 1)=2pT(B).

3. THE GENERATION OF IFBM

We are going to use Monte Carlo techniques in order to evaluate the
probabilities pT(G) with G=A, C, D in Theorem 1 for the process
y(x)=>x

0 bH(s) ds in the following intervals of DT: (0, T) and (−T, T). The
probabilities in question are small, pT Q 0 as T ‘ ., hence the IFBM
generation should be exact for a discrete sequence {xk, k=1,..., T}. Since
y(x) is a self-similar process, it is sufficient to use integer points xk=k. In
that case {y(k/T)}=d {T−(1+H)y(k)}, while the probabilities pT(G) can
obviously be expressed in terms of the statistics M=maxD1

y(x), G=
arg maxD1

y(x), A+=>D1
1y > 0 dx of the process {y(x), x ¥ D1}, where

D1=(0, 1) or (−1, 1), as follows:

pT(A)=FM(T−(1+H)); pT(C)=F|G|(T−1); pT(D)=F̂A(T−1) FG(1−0)
(10)

where Ft is the distribution of t and F̂A is the conditional distribution of
A+ given |G| ] 1.
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The Generation of {y(k), k=0,..., T }. The sequence {y(k), k=0,..., T}
is Gaussian and has stationary second increments, i.e., the sequence

gk=y(k − 1) − 2y(k)+y(k+1), k=1,..., T − 1,

has a Toeplitz correlation matrix [mi − j], where

mk=cq[|k − 2|q − 4 |k − 1|q+6 |k|q − 4 |k+1|q+|k+2|q] (11)

and cq=[2q(q − 1)]−1, q=2H+2.
The second differences {gk} combined with the initial conditions

y(0)=0 and y(1) are sufficient to uniquely reconstruct the sequence
{y(k), k=0,..., T}. One can assign y(1) by using the decomposion
y(1)=ŷ(1)+y+(1) into the predictable part ŷ(1)=E(y(1) | g1,..., gT − 1) of
y(1) and the part y +(1) that cannot be predicted from the data
{gi, i=1,..., T − 1)}. In that case

y(1)= C
T − 1

k=1
zkgk+se0. (12)

Here, z=(z1,..., zT − 1)Œ is the solution of the linear equation:

[mi − j]
T − 1
1 z=m, (13)

where the vector m has the components

mk=Ey(1) gk=D[q |k|q − 1 − |k|q+|k − 1|q] cq

and D is the difference operator of second order: Df(k)=f(k − 1) −
2f(k)+f(k+1). The second term is se0=y +(1), where e0 is the standard
Gaussian random variable which is independent of {g1,..., gT − 1};

s2=E[y+(1)]2=q−1 − C
1 [ k < T

zkmk,

because q−1=E |y(1)|2 and E |ŷ(1)|2=;T − 1
1 zkmk.

It thus appears that the exact generation of the sequence
{y(k), k=0,..., T} reduces to the generation of the stationary Gaussian
sequence {gk, k=1,..., T − 1)} with correlation function (11) and to the
solution of the linear equation (13).

The Generation of {y(k), |k| < T/2}. For generating y(x) in a bila-
teral interval, we note the following. Assume that y(x) is IFBM in (0, T),

Small Values of the Maximum 935



while ỹ(x) is IFBM in (−TŒ, Tœ), TŒ+Tœ=T and ỹ(0)=ỹ −(0)=0. In that
case

{y(x) − y(TŒ) − yŒ(TŒ)(x − TŒ), x ¥ (0, T)}=d {ỹ(x − TŒ), x ¥ (0, T)}.

The left-hand side provides a key to how one is to transform the
sequence {y(k), k=0,..., T} into an IFBM sequence that starts from the
point 0 < k0 < T, i.e., ỹ(k0)=ỹ −(k0)=0. To do this one must also find the
derivative yŒ(k0). In a similar way as above:

yŒ(k0)=E{yŒ(k0) | g1,..., gT − 1}+E{yŒ(k0) | e0}+yŒ
+(k0)

where the first two terms correspond to the predictable part of yŒ(k0) based
on the data {g1,..., gT − 1, e0}, while the third term corresponds to the
unpredictable part of yŒ(k0). The predictable part is

E{yŒ(k0) | g1,..., gT − 1, e0}= C
T − 1

k=1
z −

kgk+ae0,

where (z −

1,..., z −

T − 1) is the solution of (13) with the right-hand side mŒ=
(m −

1,..., m −

T − 1). The components of mŒ are

m −

k=EyŒ(k0) gk=D[|k|q − 1+|k0 − k|q − 1 sgn(k0 − k)] qcq.

One has a=EyŒ(k0) e0. From (12) one derives Ey(1) yŒ(k0)=sa+
;T − 1

k=1 zkm −

k. Hence

sa=cq · q[(q − 1) kq − 2
0 +1 − kq − 1

0 +(k0 − 1)q − 1] − C
T − 1

k=1
zkm −

k.

One has yŒ
+(k0)=sŒeŒ where eŒ is a standard Gaussian variable that is

independent of (g1,..., gn − 1, e). The variance of the unpredictable part sŒ
2

can be found from the relation

k2H
0 =E[yŒ(k0)]2= C

T − 1

k=1
z −

km −

k+a2+sŒ
2.

To sum up, the exact generation of {y(k), k=0,..., T; y(k0)=yŒ(k0)=0}
requires that an equation like (13) should be solved twice.

The Generation of {gk}. Bardet et al. (2) provide a review of the
methods which allow generation of Gaussian stationary sequences with a
prescribed correlation function. We use the progressive Schur algorithm, (1)
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which is a Levinson–Durbin method. The Generalized Schur algorithm can
be used in the framework of this method for fast solution of equations like
(13) by the Gohberg–Semenkul formula. (1) The generation of {gk, k=1,...,
T − 1} by this method requires O(T2) operations. The computation is
organized so as to minimize the amount of calculation needed for generat-
ing N IFBM samples; the computational complexity is a linear function of
N and the storage capacity is of order O(T2).

The parameters N and T are equally important in the problem con-
sidered. The first parameter controlls the error e1 of the Monte Carlo
method since e1=O(N−0.5), while the second one controlls the error e2

resulting from discretization. To assess the order of e2 we note the follow-
ing: we are interested in the distributions of M, G, A+ near zero where they
are expected to behave like xhL(x), L being a slowly varying function.
Since the approximation to IFBM is discrete, these distributions contain
a positive atom at zero of size p0(T)=P(y(k) [ 0, k=0, ± 1, ± 2,...,
k ¥ DT). The probability is doubled for the statistic Z (the rightmost zero
of y(t), t ¥ (0, T)). Obviously p0(T) \ P{y(x) [ 0, -x: |x| \ 1, x ¥ DT)}
because y(0)=0. Therefore, if the bounds given by Theorem 1 are explicit,
p0(T) and consequently e2 should not decrease faster than T−hLŒ(T). The
expected value is h=1 − H for the interval (−T, T) and h [ 1/4 for (0, T)
(see below). The small value of h(H) and run-time memory size (of order
T2) prevent from setting e2 equal to an arbitrary small value. For instance
(see below), taking T=8194 and N=50000 we have T−h % 0.1 and
N−0.5 % 0.0045 if h=0.25. Note however that these numbers tell not so
much about the accuracy of exponent h, since the convergency rate of the
probability densities near zero (as T Q .) is unknown.

4. EVALUATION OF h(H) AND RELATED RESULTS

The numerical analysis of log-asymtotics

log pT=−h(H) log T(1+o(1)), T Q .

resulting from Theorem 1 and expression (10) can be reduced to an analysis
of distribution function F(x) as x Q 0. Here F(x) denote the distribution
function of either M

1
1+H, |G|, A+, or Z (see Sections 1 and 3). These statis-

tics correspond to the process y(t), t ¥ D, D being an interval of fixed
length. By virtue of self-similarity of y(t) we may set D=( − 1

2 , 1
2) for

DT=( − T, T) and D=(0, 1) for DT=(0, T). Having log F(x)=
h log x(1+o(x)) x Q 0 for any of these statistics we get much the same
asymptotic for the other, moreover, the corresponding slopes coincide with
h(H)—this results from the second part of Theorem 1.
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We have analyzed all cases of these statistics, but we present here only
the estimates for the maximum position |G| since the conclusions and diffi-
culties in the other cases are much the same. The distribution of |G| is the
key point for analysis of probabilities pT, DT=( − T, T) in a large class of
self-similar processes. This is indicated by Theorem 2 which is also of some
additional interest.

The distributions of |G| are estimated for H=0.1 ÷ 0.9 at increments
of 0.1. The estimates result from N=50000 samples of y(t) with sample
size T=8194, the latter corresponding to the discretization d=T−1 %

1.2 · 10−4. The generation of y(t) for different H uses identical white noise
samples that is why the residuals of the corresponding estimates appeared
to be correlated for different H.

We derive the estimates by Maximum Likelyhood method using the
assumption F(x)=Cxh within an appropriate interval (x− , x+). Obviously
x− > d since the discrete-time approximation of F(x) keeps the atom
p0(T)=O(T−h) at x=0. Note that such a discontinuity causes a bend in
the log-log plot of F for sufficiently small x.

The Bilateral IFBM Process

Figure 1 presents the distributions of |G| for the bilateral IFBM
process. The curves are well consistent with the log-log linear behaviour of
F(x) for small x. The estimates of the slope ĥ(H) in intervals Di=
(10−3, 10−2) · i, i=1 ÷ 5 are consistent with the hypothetical value
h(H)=1 − H as well. The residual |ĥ − h| in intervals Di does not exceed
0.03. We have not taken into account interval (d, 10d) where d ’ 10−4,
since all curves of log F(x) have biased slopes there due to discontinuity (of
the discrete time distributions) at zero. Let us clarify the nature of the
asymptotics

P(|GT | < 1)=T−(1 − H)LT. (14)

The function y(x) is differentiable, hence the position of the global
maximum, GT, belongs to the zero set of bH(x) or to the end-points of
(−T, T). For this reason it should seem that the local time l(x)=
lime Q 0

1
2e >x

0 1|bH(s)| < e ds is the natural time scale in our problem of the
maximum of y(x), i.e., it is more natural to study ỹ(l)=y(x(l)) instead of
y(x), where x(l) is the inverse function of l(x) which is continuous on the
right. The process was first treated by Vergassola et al. (20) and indepen-
dently used by Isozaki and Watanabe (12) to prove the Sinai asymptotics for
H=1/2. It is a known fact (13) that l(x) is a continuous self-similar process
with parameter h=1 − H. Consequently, l(T)=O(T1 − H), and (14) means,
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Fig. 1. Distributions of |G| for the position of maximum G of the IFBM process in interval
( − 1

2 , 1
2). Various values of H are shown at the curves.

roughly speaking, that P(|G̃L | < 1)=L−1LL, L ± 1 where G̃L is the loca-
tion of the maximum of ỹ(l) in (−L, L). Indeed, this relation holds for
H=1/2, because ỹ is a stable Levy process of index a=1/3. The theorem
to follow shows that this relation also holds for general self-similar proces-
ses with stationary increments (SSSi).

Theorem 2. Let t(t), t(0)=0 be a cadlag (right-continuous with
limits to the left) SSSi-process and M=sup{t(s), s ¥ [0, 1]}=
max(t(G), t(G − )) where 0 [ G [ 1 is the leftmost position of M. Then

1. G has a continuous probability density k(t) in (0,1), and

k(t) [ k(s) max 1 s
t
,

1 − s
1 − t

2 , -t, s ¥ (0, 1), (15)

i.e., k — 0 or k > 0.

2. if k – 0, then the position GT of the supremum of t(t) in
(−Ta, T(1 − a)) satisfies the following relation:

P(|GT | < 1)=
k(a)
2T

(1+o(1)), T Q .. (16)

The proof of Theorem 2 is nearly identical with that given in ref. 16 for the
process bH(x), so it is relegated to the Appendix. Note that the asymptotics
(16) appears as a simple consequence of the fact that the statistics of G has
a nonzero distribution density. For stable Levy processes one has either

Small Values of the Maximum 939



k(t)=Ctr − 1(1 − t)−r (if 0 < r < 1) or k(t)=d(t − r) (if r=0 or 1). There-
fore bounds in (15) are accurate enough for the whole class of SSSi pro-
cesses.

The Unilateral IFBM Process

The distribution of the position of the maximum G for y(t), 0 < t < 1
are presented by Fig. 2 (cases H=0.1 ÷ 0.4—left, cases H=0.5 ÷ 0.9
—right). We have good confirmation of the log-log linear asymptotics near
zero for those H for which the discontinuity p0(T) is small, i.e.,
p0(T) < 0.1 as in Fig. 1. In addition one can assert that h( 1

2) > h(H) and
h(H) Q 0 at the endpoints H=0, 1. The latter is in agreement with the
following representation of y(t) in the degenerate cases: y(t)=tt for H=0
and y(t)=1

2 tt2 for H=1, where t is a standard random Gaussian vari-
able. As a result one has P(G < x | H=0, 1)=1

2 for x < 1 and h(0)=
h(1)=0.

The estimates of h in the interval of G: 10−3 − 10−2 are as follows:

H: 0.1 0.2 0.3 0.4 0.5

ĥ: 0.09 0.13 0.18 0.21 0.23

h0: 0.09 0.16 0.21 0.24 0.25

We also list the hypothetical values of h: h0=H(1 − H) for compari-
son purposes in the above table. The exact result due to Sinai: (19) h=0.25
for H=1/2 shows that we can still take the error of ĥ equal to 0.03. In
that case the hypothetical estimates h0 do not contradict the empirical ones.
All deviations ĥ − h0 for listed h0(H) are negative that is in accordance with
strong correlations of ĥ for different H (see above).

Fig. 2. Distribution of the position of maximum G for the IFBM process. Shown are the
parts of curves related to the interval (10−4, 10−3) together with the corresponding values of H.
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It would be natural to expect an analytical dependence of h on H for
the IFBM process. Consequently, the hypothesis h0(H) can also be
extended to cover the case H > 1/2 which analysis is difficult. That
extrapolation is exact for H=1.

The rigorous result guarantees that h(H)/(1+H) is decreasing for
H > 1/2.

Theorem 3. (a) The distribution FM(x | H) for the maximum of

y1(t)=`2H+2 F
t

0
bH(s) ds, 0 < t < 1 (17)

increases with increasing H in the interval (1/2, 1) for any fixed x > 0.

(b) If FM(x1+H | H)=xh(H)L(x), x a 0 where L(x) is a slowly
varying function, then h(H)/(1+H) decreases with increasing H in
(1/2, 1).

Proof. The process (17) differs from y(x) by the normalization
E |y1(1)|2=1. Let tq(x)=y1(xh) where q=2H+2, h=q0/q, q0=2H0+2,
and H > H0.

Since IFBM is self-similar with parameter h=H+1, one has
E |tq(x)|2=|x|q0=E |tq0

(x)|2.
We show in the Appendix that

Etq(x) tq(y) \ Etq0
(x) tq0

(y) (18)

when H > 1/2. In that case the Slepian lemma (14) yields

P(max
[01]

tq(x) < u) \ P(max
[01]

tq0
(x) < u).

However, max[01] tq(x)=max[01] `2H+2 >x
0 bH(s) ds which proves the

first part of the statement. The second part is an obvious corollary of the
first.

5. CONCLUSION

We were testing the hypothesis that the maximum M of the integral of
fractional Brownian motion of index H considered on finite segment I,
0 ¥ I has the distribution FM(x (1+H))=xh(H)LH(x), x Q 0, where LH is a
slowly varying function. We have presented theoretical arguments and
computational evidence to support and refine the hypothesis as follows:
h=1 − H for I=(−1, 1) and h=h+=H(1 − H) for I=(0, 1). The first
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hypothesis seems to be certainty, while the second one is the simplest
theoretical statement consistent with the data (see more in ref. 23).

Our computations reject the hypothesis h+=(1 − H)/2 from ref. 20.
Using Isozaki’s approach, one can show that h+=(1 − H)/2 holds for
integral of Levy stable processes with Levy parameters 1 < a [ 2, |b| [ 1
and with the self-similarity parameter H=a−1 ¥ [1

2 , 1). The case H=1/2 is
relevant to Brownian motion again. The estimate h+=(1 − H)/2 is based
on the fluctuation theory for random walks. New approaches are therefore
required in the nonmarkovian case for analysis small maxima or long
excursions. Theorems 1 and 2 in the present paper and the results of ref. 16
constitute a step in that direction.

We emphasize computational difficulties of estimating h and demon-
strate how these difficulties are related to the discretization of IFBM. One
can not exclude the discretization effect considering the original problem
(2) and using direct methods of estimation of the Hausdorff dimension of
Lagrangian regular points (the case of h for I=(−1, 1)). The difficulties
one faces in this approach are discussed in refs. 9 and 18.

APPENDIX

Proof of Theorem 2. A distribution function (here FG) is differen-
tiable almost everywhere, because of monotonicity. Suppose this is true for
the point x0. Consider x < x0, l=x0/x > 1. The self-similarity of t(x)
yields

P(G(0, 1) ¥ dx)=P(G(0, l) ¥ ldx) [ P(G(0, 1) ¥ ldx)=k(x0)
x0

x
dx.

(19)

Here, G(a, b) is the leftmost position of the supremum of {t(x), x ¥ (a, b)}.
Consequently, the distribution of G(0, 1) is absolutely continuous in
(0, x0). Points like x0 are dense in (0, 1). Consequently, FG(dx)=
k(x) dx, x ¥ (0, 1).

In virtue of (19), k(x) x is a nondecreasing function, i.e., the disconti-
nuities in k are at most denumerable, while finite limits on the left and the
right exist at the discontinuity points. The fact that the increments of t(x)
are stationary yields

P{G(0, 1) ¥ dx}=P{G(−a, 1 − a) ¥ dx − a} [ P{G(0, 1 − a) ¥ dx − a}

=P 3G(0, 1) ¥ d 1x − a
1 − a

24
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for any 0 < a < 1. One has

k(x) [ k 1x − a
1 − a

2 1
1 − a

at continuous points of k. Multiply both parts by (1 − x):

(1 − x) k(x) [ k 1x − a
1 − a

211 −
x − a
1 − a

2=k(y)(1 − y), y=
x − a
1 − a

< x.

Combining both inequalities, one gets

k(x) [ k(y) max 1y
x

,
1 − y
1 − x

2 (20)

at all continuous points x and y. In particular, k(x+0) [ k(x − 0) [

k(x+0), i.e., k is continuous in (0, 1). If k(x0)=0, x0 ¥ (0, 1), then one
has k(x)=0, x ¥ (0, 1) from (20). Consequently, the following alternative
holds: either k — 0 or k > 0 in (0, 1). The second part of Theorem 2 is an
immediate corollary of the first part and the self-similarity of t(x), see
ref. 16.

The Proof of (18) in Theorem 3. Let tq(t)=`q >y
0 bH(s) ds, y=th,

h=q0/q < 1, q=2H+2. The correlation function bq(t, s) of tq(t), can be
written as

2t−q0bq(t, s)=
q0

q0 − h
(rh+rq0 − h)+[(1 − rh)q0/h − (1+rq0)]

h

q0 − h
(21)

where r=s/t. Because bq is symmetric in t, s, we put r [ 1. We will show
that bq(t, s) > bq0

(t, s), if q > q0 > 3 or, which amounts to the same thing,
H > H0 > 1/2.

We have in virtue of (21):

2t−q0[bq(t, s) − bq0
(t, s)]=(q − q0)(1 − rh)(q0 − 1)−1 R1+q0(q0 − 1)−1 R2.

Here R1=(1 − yq − 1 − ȳq − 1)(q − 1)−1 − (ȳq0 − 1 − ȳq − 1)(q − q0)−1, y=rh, ȳ=
1 − y and

R2=F
1

h

[ra − rq0 − a − (1 − ra)q0 − 1 ra] da ln 1/r.

We now are going to show that R1 \ 0, and R2 \ 0, if H \ 1/2.
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Consider R2. Put ra=u. Since 0 < h < a < 1 and 0 < r < 1, it follows
that 0 < u < 1. The integrand in R2 becomes

u[1 − uq0/a − 2 − (1 − u)q0 − 1] \ u[1 − uq0 − 2 − (1 − u)q0 − 2]

\ u[1 − max(1, 23 − q0)] \ 0.

The last estimate is true, because 3 − q0=1 − 2H [ 0 when H > 1/2.
Consequently, R2 \ 0.

Consider R1. The function R1(y) is positive around 0 and 1:

R1=˛y2(q0 − 1)/2+O(yq − 1), y Q 0
ȳ+O(ȳq0 − 1), ȳ Q 0.

Consequently, R1 \ 0, if the function has a single local extremum in
(0, 1). Let z=(1 − y)−1 ¥ (1, .). Then

− zq0 − 2 d
dy

R1=[(z − 1)q − 2 − 1] − [zq − q0(q0 − 1) − q − 1](q − q0)−1 :=f(z).

We now show that f(z) has a single root in (1, .). The function

f(z)=˛ − (z − 1)(q0 − 1)+O((z − 1)2H), z Q 1
(z − 1)q − 2 (1+o(1)), z Q .

(22)

changes sign in (1, .). The equation fŒ(z)=0 or

(q − 2)(z − 1)q − 3=(q0 − 1) zq − q0 − 1 (23)

determines the local extremums of f(z) in (1, .). Two strictly monotone
functions occur in (23): on the left is a function that increases from 0 to .,
because q − 3=2H − 1 > 0, while the nonnegative function on the right
decreases toward zero at infinity, because q − q0 − 1=2(H − H0) − 1 <
2 · 1/2 − 1 < 0. In that case, however, (23) has the single root 1 < zg < .. In
virtue of (22) zg is the point of minimum, where f(zg) < 0. The function
f(z) is strictly increasing from f(zg) < 0 to . in (zg, .), so that the equa-
tion f(z)=0 has a single root, as was to be proved.
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